1,537 research outputs found

    Oral History of Rosemary DeRose

    Get PDF

    Vertically emitting annular Bragg lasers using polymer epitaxial transfer

    Get PDF
    Fabrication of a planar semiconductor microcavity, composed of cylindrical Bragg reflectors surrounding a radial defect, is demonstrated. A versatile polymer bonding process is used to transfer active InGaAsP resonators to a low-index transfer substrate. Vertical emission of in-plane modes lasing at telecom wavelengths is observed under pulsed optical excitation with a submilliwatt threshold

    Soldados Razos: Issues of Race in Vietnam War Drama

    Get PDF
    A study of black and Hispanic Vietnam veteran characters represented in post-war drama

    Assessment of lithographic process variation effects in InGaAsP annular Bragg resonator lasers

    Get PDF
    Optical microresonators based on an annular geometry of radial Bragg reflectors have been designed and fabricated by electron-beam lithography, reactive ion etching, and an epitaxial transfer process. Unlike conventional ring resonators that are based on total internal reflection of light, the annular structure described here is designed to support optical modes with very small azimuthal propagation coefficient and correspondingly large free spectral range. The effect of lithographic process variation upon device performance is studied. Laser emission wavelength and threshold optical pump power are found to vary between similar devices given different electron doses during electron-beam lithography. As the resonance wavelength and quality factor of these resonators are very sensitive to environmental changes, these resonators make ideal active light sources that can be integrated into large arrays for gas and liquid sensing applications and are easily interrogated

    Hybrid InGaAsP-InP Mach-Zehnder racetrack resonator for thermooptic switching and coupling control

    Get PDF
    An InGaAsP-InP optical switch geometry based on electrical control of waveguide-resonator coupling is demonstrated. Thermooptic tuning of a Mach-Zehnder interferometer integrated with a racetrack resonator is shown to result in switching with ON-OFF contrast up to 18.5 dB. The optical characteristics of this unique design enable a substantial reduction of the switching power, to a value of 26 mW in comparison with 40 mW for a conventional Mach-Zehnder interferometer switch. Modulation response measurements reveal a 3 dB bandwidth of 400 kHz and a rise time of 1.8 µs, comparing favorably with current state-of-the-art thermooptic switches

    Lasing from a circular Bragg nanocavity with an ultra-small modal volume

    Get PDF
    We demonstrate single-mode lasing at telecommunication wavelengths from a circular nanocavity employing a radial Bragg reflector. Ultra-small modal volume and Sub milliwatt pump threshold level are observed for lasers with InGaAsP quantum well active membrane. The electromagnetic field is shown to be tightly confined within the 300nm central pillar of the cavity. The quality factors of the resonator modal fields are estimated to be on the order of a few thousands.Comment: 3 pages, 4 figures Submitted to AP

    Transcription-related mutations and GC content drive variation in nucleotide substitution rates across the genomes of Arabidopsis thaliana and Arabidopsis lyrata

    Get PDF
    BACKGROUND: There has been remarkably little study of nucleotide substitution rate variation among plant nuclear genes, in part because orthology is difficult to establish. Orthology is even more problematic for intergenic regions of plant nuclear genomes, because plant genomes generally harbor a wealth of repetitive DNA. In theory orthologous intergenic data is valuable for studying rate variation because nucleotide substitutions in these regions should be under little selective constraint compared to coding regions. As a result, evolutionary rates in intergenic regions may more accurately reflect genomic features, like recombination and GC content, that contribute to nucleotide substitution. RESULTS: We generated a set of 66 intergenic sequences in Arabidopsis lyrata, a close relative of Arabidopsis thaliana. The intergenic regions included transposable element (TE) remnants and regions flanking the TEs. We verified orthology of these amplified regions both by comparison of existing A. lyrata – A. thaliana genetic maps and by using molecular features. We compared substitution rates among the 66 intergenic loci, which exhibit ~5-fold rate variation, and compared intergenic rates to a set of 64 orthologous coding sequences. Our chief observations were that the average rate of nucleotide substitution is slower in intergenic regions than in synonymous sites, that rate variation in both intergenic and coding regions correlate with GC content, that GC content alone is not sufficient to explain differences in rates between intergenic and coding regions, and that rates of evolution in intergenic regions correlate negatively with gene density. CONCLUSION: Our observations indicated that mutation rates vary among genomics regions as a function of base composition, suggesting that previous observations of "selective constraint" on non-coding regions could more accurately be attributed to a GC effect instead of selection. The negative correlation between nucleotide substitution rate and gene density provides a potential neutral explanation for a previously documented correlation between gene density and polymorphism levels within A. thaliana. Finally, we discuss potential forces that could contribute to rapid synonymous rates, and provide evidence to suggest that transcription-related mutation contributes to rate differences between intergenic and synonymous sites

    A Distance Ruler for RNA Using EPR and Site-Directed Spin Labeling

    Get PDF
    AbstractAs a basic model study for measuring distances in RNA molecules using continuous wave (CW) EPR spectroscopy, site-directed spin-labeled 10-mer RNA duplexes and HIV-1 TAR RNA motifs with various interspin distances were examined. The spin labels were attached to the 2′-NH2 positions of appropriately placed uridines in the duplexes, and interspin distances were measured from both molecular dynamics simulations (MD) and Fourier deconvolution methods (FD) [13]. The 10-mer duplexes have interspin distances ranging from 10 Å to 30 Å based on MD; however, dipolar line broadening of the CW EPR spectrum is only observed for the RNAs for predicted interspin distances of 10–21 Å and not for distances over 25 Å. The conformational changes in TAR (transactivating responsive region) RNA in the presence and in the absence of different divalent metal ions were monitored by measuring distances between two nucleotides in the bulge region. The predicted interspin distances obtained from the FD method and those from MD calculations match well for both the model RNA duplexes and the structural changes predicted for TAR RNA. These results demonstrate that distance measurement using EPR spectroscopy is a potentially powerful method to help predict the structures of RNA molecules

    Using Inventory-based Tree-ring Data as a Proxy for Historical Climate: Investigating the Pacific Decadal Oscillation and teleconnections.

    Get PDF
    In 2009, the Interior West Forest Inventory and Analysis (FIA) program of the U.S. Forest Service started to archive approximatel y 11 000 increment cores collected in the Interior West states during the periodic inventories of the 1980s and 1990s. The two primary goals for use of the data were to provide a plot-linked database of radial growth to be used for growth model development and other biometric analyses, and to develop a gridded dendroecological database that could be used to analyze regional patterns of climate, disturbance, and other ecosystem-scale processes. Early analysis related to the latter goal showed that the fi nely gridded data could be used to map past climatic patterns with more detail than is possible using traditional chronologies. FIA-based Douglas-fi r and pinyon pine chronologies showed high temporal coherence with previously published tree-ring chronologies, and the spatial and temporal coherence between the FIA data and water year precipitation was strong. FIA data also captured the El Niño-Southern Oscillation (ENSO) dipole and revealed considerable latitudinal fl uctuation over the past three centuries. Finally, the FIA data confi rmed the coupling between wet/dry cycles and Pacifi c decadal variability known to exist for the Intermountain West. These results highlight the further potential for high-spatial-resolution climate proxy data sets for the western United States

    InGaAsP annular Bragg lasers: theory, applications, and modal properties

    Full text link
    • …
    corecore